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Abstract-An analytical solution is given of the class of problems of an elastic half plane with a
circular cavity, loaded on the cavity boundary, The solution uses complex variables, with a conformal
mapping onto a circular ring. The coefficients in the Laurent series expansions of the stress functions
can be expressed into a single constant by a system of recurrent relations, obtained from the
boundary conditions, The remaining constant can be determined from the requirement of con
vergence of the series. For the case of a uniform radial stress at the cavity boundary the solution
can be given in closed form, confirming known results for the stresses, but also giving simple explicit
expressions for the displacements. ,("'; 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Some decades ago the complex variable method was a popular method for the derivation
of solutions of plane elastostatic problems (Muskhelishvili, 1953; Sokolnikoff, 1956; Timo
shenko and Goodier, 1970). The method was especially successful for problems for regions
that can be mapped conformally onto a circle or a half plane by relatively simple functions.
For problems of multiply connected regions, such as problems of stress concentrations in
plates with cavities, the method has been used with some success for problems involving
circular or elliptical holes in infinite plates. However, in the more general case of problems
for regions bounded by two eccentric circles, it is stated (Sokolnikoff, 1956, p. 301) that the
"solution of the resulting systems presents difficulties" and it is suggested to use other
methods of solution, such as the method using bipolar coordinates. This method had indeed
been used successfully to solve a number of problems (Jeffery, 1920; Mindlin, 1940, 1948),
in particular problems of an elastic half plane with a circular cavity. In this method the
numerical computations are also rather complicated, however, and results are usually
restricted to the stress distribution for cavities not too close to the free boundary. Recent
work on the determination of stress concentration near cavities uses other analytical and
numerical techniques, for instance singular asymptotics analysis (Callias and Markenscoff,
1989), numerical inversion of integral transform solutions (Georgiadis et al., 1995), or
boundary integral techniques (Rajapakse and Gross, 1995).

It is the purpose of this paper to show that the difficulties mentioned by Sokolnikoff
and Muskhelishvili indeed occur, but that they can be surmounted, by a combination of
analytical and numerical analysis. In particular, the requirement of convergence of the
series solution will be shown to lead to an additional condition on the coefficients, which is
essential to the evaluation of the solution. This may lead to a reappraisal of the complex
variable method for problems of elastostatic stress concentration.

The problems considered in this paper refer to a half plane with a circular cavity. The
boundary conditions are that the upper boundary of the half plane is free of stress and that
at the boundary of the cavity the radial stress is prescribed. As an example the case of a
uniform radial stress acting at the cavity boundary will be elaborated. The stresses for this
case have been determined long ago by Jeffery (1920), using bipolar coordinates. The
present method confirms these results, but it also gives expressions for the displacements,
in closed form. The complex variable solution given is more general than this single example,
however, and it can be applied, at least in principle, to problems with arbitrary stress

2795



2796 A. Verruijt

conditions on the cavity boundary. A similar method can be used for the solution of
problems with a prescribed displacement at the boundary of the cavity (Verruijt, 1997).

2. STATEMENT OF THE PROBLEM

The problem refers to an elastic half plane with a circular cavity, see Fig. 1. The upper
boundary of the half plane is free of stress, and loading takes place along the boundary of
the circular cavity, in the form of a given distribution of surface tractions. The radius of
the cavity is denoted by r, the depth of its center below the free surface by h, and the cover
by d, see Fig. I. The ratio r/h will be considered as the basic geometrical parameter.

In the complex variable method (Muskhelishvili, 1953; Sokolnikoff, 1956) the solution
is expressed in terms of two functions ¢(z) and l/1(z), which must be analytic in the region
R occupied by the elastic material (the half plane y < 0 with the exclusion of the circular
hole). The stresses are related to these functions by the equations

O"n+O"yy = 2{¢'(z)+¢'(z)},

O"n-0"\X+2iO",r = 2{z¢"(z)+I/1'(z)},

and the displacements are given by

2f1.(u, +iuJ = K¢(Z) - z¢' (z) -1/1(z),

(I)

(2)

(3)

where f1. is the shear modulus of the elastic material and K is related to Poisson's ratio v by
K = 3-4v for plane strain and K = (3 - v)/(l +v) for plane stress.

The boundary conditions are that on both boundaries the surface tractions are
prescribed. It is most convenient to express the boundary condition in terms of the integral
of the surface tractions, integrated along the boundary:

y

Fig. 1. Halfplane with circular cavity.
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F(s) = F) + iF2 = i f' (Ix + ify) ds,
Jso
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(4)

where So is some arbitrary point of the boundary. Thus the boundary conditions are
(Muskhelishvili, 1953)

y = 0: ¢(z) + z¢'(z) + ljJ(z) = 0, (5)

(6)

where F(s) is a given function of the coordinate s along the cavity boundary, and C is an
unknown integration constant. It has been assumed that this constant is zero along the
stress-free upper boundary. Such an assumption may be made on one of the boundaries
without loss of generality. The precise form of the function F(s) depends upon the actual
stress distribution along the cavity boundary. It is assumed that the stresses at the cavity
boundary are bounded and form an equilibrium system. In that case the function F(s) is
continuous along the entire cavity boundary.

3. THE SOLUTION METHOD

3.1. Conformal mapping
It is assumed that the region R in the z-plane can be mapped conformally onto a ring

in the (-plane, bounded by the circles 1(1 = I and 1(1 = a, where a < I, see Fig. 2. This ring
shaped region is denoted by y. The appropriate conformal transformation is

l-a 2 1+(
z = w(() = -ih----,

]+a2 1-(
(7)

where h is the depth of the center of the cavity, and a is a parameter defined by the ratio
(r/h) of the radius and the depth of the cavity.

r 2:;(
---,~-

h I +a2
(8)

It can easily be verified that the circle 1(1 = I corresponds to the axis y = 0, and that the

A

Fig. 2. Plane of conformal transformation.
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circle 1(I = (X corresponds to the circle x2 + (y +h)2 = r2. The origin in the z-plane is mapped
onto ( = - I, and the point at infinity in the z-plane is mapped onto ( = I, see Fig. I. If
'J. --> 0 the radius of the circular cavity is practically zero, which indicates a very deep tunnel,
or a very large covering depth. If rx --> 1 the covering depth is very small. For every value of
r/h the corresponding value of rx can be determined from eqn (8).

Because the conformal transformation function w(O is analytic in the ring bounded
by the circle 1(1 = I and 1(1 = rx, the functions 4>(z) and t/J(z), which must be analytic
throughout the region R in the z-plane, can be considered as functions of (,

4>(z) = 4>(w(O) = 4>(0,

t/J(z) = t/J(w(O) = t/J(O,

(9)

(10)

and they are both analytic in the region y in the (-plane. This means that they can be
represented by their Laurent series expansions,

if Xj

t/J(O = I Ck(k + L dk(-k.
k=O k~1

(11 )

(12)

These series expansions will converge throughout the ring y, up to the boundaries 1(1 = I
and 1(1 = rx. The point (= -i, which corresponds to infinity in the z-plane, deserves
some special consideration. Because the stresses at the cavity boundary are restricted to
equilibrium systems, it can be assumed that the stresses tend towards zero at infinity, and
that the displacements will be bounded at infinity, so that the Laurent series also converge
on the boundaries. The coefficients ak> bb Ck and d k must be determined from the boundary
conditions.

The boundary conditions are expressed in terms of the functions 4>(z), t/J(z), and a
term z4>'(z), see eqns (5) and (6). When transforming these conditions in terms of the
variable ( the term z4>' (z) needs special attention. Because 4>' (z) is defined as d4>/dz (the
accent denoting differentiation with respect to the variable indicated), the derivative with
respect to ( can be written as

It now follows that

'y d4> d4> dz , ,
4> (~) = d( = dz d( = 4> (z)w (0.

---,-- w(o -,-
z4> (z) = '(Y) 4> (0.w ~

(13)

(14)

The character of the factor w(O/w'(O determines the mathematical difficulties involved in
solving boundary value problems for a certain type of region.

In the present case the conformal transformation is given by eqn (7). Differentiation
of this expression with respect to ( gives

(15)

On a circle with radius p in the (-plane we have ( = prJ, where rJ = exp(iO). Then' = prJ-I.
This gives
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I (I +pa)(a _ p) 2

2 a 2 (1 - pa)
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(16)

In this case, of a circular cavity, this factor appears to be relatively simple. For problems
with a cavity of more complicated shape the factor may be so complicated that it practically
prohibits analytic solution of the problem.

3.2. The surface boundary condition
The first boundary condition is that the upper boundary y = 0 must be entirely free of

stress, see eqn (5). In the (-plane this boundary condition is, with eqn (14),

1(1 = I: 4>(0+ w,((! ¢'(O+l{J(() = O.
OJ (~)

(17)

On this boundary the radius p = I, so that the expression (16) reduces to the simple form

v w(O 1_2
I~I = I ::C·_· v = (I-a ).

w'(I,) 2
(18)

The boundary condition (17) now gives, after substitution of the series expansions (II) and
(12),

Cf~ L

+ Co + L cka-
k + L dka

k = o. (19)
k~ I k~ 1

The coefficients Ck and dk can be solved from this equation, by setting the coefficients of all
powers of a equal to zero. The result is

(20)

(21 )

(22)

One half of the unknown coefficients have now been expressed into the other half. If the
coefficients ak and bk can be found, the determination of Ck and dk is explicit and straight
forward. The remaining unknown coefficients ak and bk must be determined from the
boundary condition at the cavity boundary.

3.3. The cavity boundary condition
In this paper the first boundary value problem is considered, in which the surface

traction is prescribed along the cavity boundary [see eqn (6)]. The transformed form of the
boundary condition at the corresponding boundary in the (-plane is

w(O ~- --.
1(1 = :x:4>(0+ ;(o-r)4>'(O+l{J(O = F(O+C,

w s
(23)

where F(O is a given function, the precise form of which depends upon the stress distribution
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along the cavity boundary in the z-plane. Points on the circle 1(1 = CJ. will be denoted by
( = (J.(J, where (J = exp(i8). Along this circle the value of the first factor in the second term
of eqn (23) is, with eqn (16),

w«) -1X(J-(l-2et2)+et(2-et2)(J-I _et2(J-2

1(1 = IY.: w'(O = 2(l-c((J) (24)

In contrast with the boundary condition at the outer boundary, where this factor was of a
very simple form, see eqn (18), this factor now is of a complicated form, especially because
of the appearance of the term (l-et(J) in the denominator. In order to eliminate the
difficulties caused by this term, the boundary condition (23) is rewritten in the form

where

I W«)._-J1(1 =ct :(I-et(J\rP«) + ;il(OrP'(O+ Ij;«) = F*(IX(J) + C(1-et(J),

F*(et(J) = (l-et(J)F(et(J).

(25)

(26)

It may be noted that the factor (1 -ct(J) is never equal to zero.
The function F*(IX(J), which defines the boundary condition at the cavity boundary,

depends upon the polar coordinate O. It is now assumed that this function can be written
as a Fourier series,

+x

F*(IX(J) = L Ak(Jk,
k= --- 'l

(27)

It can be expected that for all problems of practical significance such an expansion is
possible. An example will be presented below.

Elaboration of the left-hand side of eqn (25), on the basis of the Laurent series
expansions (II) and (l2), and the expression (24), is a laborious, but basically simple task,
leading to sums of positive and negative powers of (J. This leads to a system of equations
that must be satisfied for all possible values of 6, which will be the case if the coefficients
of all powers of (J are equal in the left- and right-hand side of the equations. This leads to
a rather complicated system of equations for the coefficients ab bb Ck and dk• However,
after elimination of the coefficients Ck and db using eqns (20)-(22), the result is that the
coefficients ak and bk must satisfy the equations

(l-et 2k +2)ak+1 +(l-.ct2)(k+ I)bk 1-1

= 1Y.2(I-ct 2k )ak + (l-1Y.2)kbk-Ak+lctk+l, k = 1,2,3, ... , (28)

and

(l-ct 2)ct2k (k+ I)ak+ 1+ (l-et 2k
+

2)bk =-\

=(I-ct2)ct2kkak+(1-1Y.2k)bk-A_ketk, k= 1,2,3, .... (29)

From these equations the coefficients ak+ 1 and bk+1 can be determined, if ak and bk are
known. This requires the solution of a system of two equations with two unknowns. The
solution can be given explicitly, of course, but it may well be more convenient to solve the
system numerically.

It may be noted that the homogeneous system (obtained when A k + \ = A k = 0) admits
a solution
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(30)

This property will be used later.
Equations for the starting coefficients aj and a2 can be obtained from the conditions

that the coefficients of (To and (TI must be zero. This gives

(31 )

(32)

It follows from eqns (31) and (32) that

(33)

which determines the integration constant C.
All the coefficients can now be determined successively, except for the constants ao and

(aj +b]). The consta1!t ao represents an arbitrary rigid body displacement, which produces
no stresses in the material. It can be left undetermined, or it can be chosen so that a certain
given point is fixech for instance the point at infinity. Of the constants al and b l only the
combination (a] +b l ) is determined by the conditions (31) and (32). Its complex conjugate
(a l +bl) remains undetermined by the equations given above. This difficulty can be resolved
by noting that the convergence of the series expressions (11) and (12) for the stress functions
cjJ and l/J, for all values of (in the ring 'Y. :( 1(1 :( 1, and in particular for ( = 1, requires that
all coefficients tend towards zero for k -. 00, and this is not automatically ensured. Because
the system of recurrent equations (28) and (29) is linear, and because the homogeneous
system of equations admits the solution (30), in which all coefficients ak and - bk are equal,
it follows that an arbitrary constant can be added to each of these coefficients without
affecting the solution of the equations given above. Thus, the first constant, say aj, can be
determined by requiring that the coefficients tend towards zero for k -. ex:;. This can be
executed by first assuming the constant a] to be zero, then calculating b l from eqn (31),
and all further coefficients from a repeated application of eqns (28) and (29). It can be
expected (and has been verified by performing the actual calculations) that for very large
values of k, say k = 1000 or k = 10,000, a constant limiting value, other than zero, is
obtained for the coefficients ak' The correct value of the coefficients can then be found by
subtracting that limiting value from al and all further coefficients ak and - bk• The remaining
coefficients Ck and dk can finally be determined from eqns (20)~(22). This completes the
solution.

It may be noted that the assumption that the coefficients tend towards zero for k -. 00

implies that a singularity of the form 1/(1-0 has been excluded. Inside the unit circle
1(1 = 1 this function can be approximated by the power series

(34)

which converges inside the circle, but not on it. Actually, this is the singularity in the
conformal transformation function (7), corresponding to a stress function cjJ = cz. It can
be shown that a stress function ¢ = cz denotes a constant stress solution (for real values
of c) and a rigid body rotation (for imaginary values of c). The constant stress solution
violates the conditions at infinity, and the rigid body rotation may be left undetermined, or
may be excluded, without effect on the stresses.

4. EXAMPLE: UNIFORM RADIAL STRESS

As an example the problem of a uniform radial stress of magnitude t at the cavity
boundary is considered. A partial solution of this problem, considering the stresses only,
has first been given by Jeffery (1920), using bipolar coordinates [see also Coker and Pilon
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(1931) ; Timoshenko and Goodier (1951)]. In this case the surface tractions along the cavity
boundary are

X
f, = t-,

r

y+h
tl' = t-

r
(35)

According to eqn (4) this must be integrated along the boundary,

I
s Is z+ih

F = F[ + iF2 = i (f, + if1') ds = it -r-ds.
'\(J So

(36)

At the boundary of the cavity z+ ih = rexp(if3), where r is the constant radius of the circular
cavity and f3 is the variable angular coordinate. Along the integration path ds = r df3, so
that

rii
F = it Jo exp(if3)rdf3 = tr[exp(if3) -1] = t(z+ih-r), (37)

where it has been assumed that the point So corresponds to f3 = O. With eqn (7) the
expression (37) can be expressed in terms of the value of ( = r:xa along the boundary in the
(-plane,

2ithr:x
F = [r:x-a+i(l-r:xa)].

(l +r:x 2 )(1-:xa)

This means that the function F*«(), as defined by eqn (26), is

2ith-x
F* =-.----. [r:x - a + i(l -:xa)].

1+-x2

(38)

(39)

It appears that in this case the boundary function only contains terms of the powers aO and
a l

. The only two non-zero coefficients in the Fourier expansion (27) are

2ith-x 2ithr:x
An = --J-x+i), Al = - --(1 +i:x).

I+-x" ]+r:x2
(40)

The determination of all the coefficients of the solution may now proceed in the way
outlined in the previous section. First the integration constant C can be determined from
eqn (33). This gives

2thr:x
C=--.

] +r:x2

It now follows from either eqn (31) or eqn (32) that

(41)

(42)

Because all coefficients Ak + I and Ak in the recurrent eqns (28) and (29) are zero in this case,
it can be expected that this system has a very simple solution. Actually, by taking k = ] in
these equations one obtains
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(43)

(44)

It appears that the right-hand side of the two equations is the same. This means that the
coefficients a2 and b2 will be zero if this right-hand side is zero, i.e. if bl = -a

2
a]. Then all

further coefficients ak and bk will also be zero, as mentioned above as a special solution of
the homogeneous system of equations. Thus it can be concluded that convergence of the
Laurent series is ensured if and only if~ = -a2al' With eqn (42) it now follows that

(45)

where

(46)

All coefficients ak and bk for k > 1 are identically equal to zero.
The last remaining coefficient ao can be determined so that the displacement at infinity

is zero. It follows from eqns (3) and (5) that this will be the case if 1> = 0 for z = 00, that
is for ( = I. With eqn (II) this gives

(47)

The other non-zero coefficients in the series expansions for the stress functions now are,
with eqns (20)-(22),

(48)

(49)

The stress functions 1>(0 and 1jJ(0 now are completely determined. They can be written in
full as

(50)

(51 )

From these simple expressions all the stresses and the displacements may be obtained. This
enables, for instance, to verify that the boundary conditions along the two boundaries are
identically satisfied. No details of the calculations will be given, as they are all straight
forward. The expressions for the stresses are all in agreement with Jeffrey's solution (Coker
and Filon, 1931). The present solution also enables us to obtain closed form expressions
for the displacements.

5. CONCLUSIONS

It has been shown that the complex variable method can be used successfully for the
solution of elasticity problems for a half plane with a circular cavity. By using a conformal
mapping onto a circular ring, it is found that the coefficients of the various terms in the
Laurent series expansions of the complex stress functions can be determined from the
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boundary conditions. In this solution it is required to determine one of the coefficients such
that convergence of the Laurent series is ensured. This condition can be satisfied by
numerically evaluating the coefficients, and then requiring that the coefficients tend towards
zero. The solution method has been illustrated by calculating the deformations for the case
of a uniform stress applied at the cavity boundary.
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